Walter Schottky Institute
Center for Nanotechnology and Nanomaterials

Semiconductor Quantum Nanomaterials - Research
Group leader: PD Dr. Gregor Koblmueller (Chair of Prof. Dr. Jonathan Finley)


HOMENEWSPEOPLEPUBLICATIONSRESEARCHTEACHINGOPENINGSFUNDING


Our research activities on semiconductor quantum nanomaterials aim at four different domains:




ADVANCED SYNTHESIS

[research]
A major workhorse for our research on advanced nano-systems/devices are innovative semiconductor nano- & quantum-heterostructures created by design using accurately controlled synthesis methods. Specifically we employ ultrahigh-purity molecular beam epitaxy (MBE) dedicated to III-V compound semiconductors (arsenides/antimonides), group-III nitrides and, soon to come, new classes of emerging 2D materials. Currently, a substantial effort in synthesis is on III-V nanowires (NW), which offer unique capabilities in heterostructure and crystal phase engineering, as well as site-selective growth and deterministic incorporation of atomically engineered low-dimensional quantum systems. The following selection of key publications gives a brief view into ongoing activities in growth/synthesis research of 1D-NWs and their quantum heterostructures.


Personnel

A. Ajay, F. Del Giudice, H. Riedl, D. Ruhstorfer, P. Schmiedeke, T. Schreitmüller  


Selected publications

[research]


D. Ruhstorfer, et al., “Demonstration of n-type behavior in catalyst-free Si-doped GaAs nanowires grown by molecular beam epitaxy”, Appl. Phys. Lett. 116, 052101 (2020).



B. Sun, et al., “Dislocation-induced thermal transport anisotropy in single-crystal group-III nitride films”, Nature Materials 18, 136 (2019).


J. Becker, et al.: “Carrier trapping and activation at short-period wurtzite/zinc-blende stacking sequences in polytypic InAs nanowires", Phys. Rev. B 97, 115306 (2018).                                                                                                                                                                                                                                                                                                                                                                                                            

 

  
G. Koblmüller, et al, “GaAs-AlGaAs core-shell nanowire lasers on silicon”, Semicond. Sci. Technol, (Invited Review) 32, 053001 (2017).





FUNCTIONAL IMAGING

[research]
To establish the as-grown quantum nano-structures for various different devices, it is important to clearly understand their structure-property relationships to predict their performance. This requires advanced high-resolution spectroscopy and imaging methods to resolve properties quantitatively and at the nanoscale. Here, we employ a whole toolbox of different nano-metrology techniques to link specific structural and morphological features with electrical, optical, mechanical and thermal properties. Examples of such methods include electrical scanning probe microscopy (SPM) techniques, high-resolution electron and ion-beam microscopy, µRaman spectroscopy, time- and spatially resolved µPL spectroscopy (vis-to-midIR), absorption spectroscopy, etc. Typical examples of research in this field are illustrated in various selected publications.


Personnel

A. Ajay, J. Becker, F. Del Giudice, D. Ruhstorfer, P. Schmiedeke, T. Schreitmüller


Selected publications


[research]




PHOTONIC PROPERTIES / DEVICES

[research]
One of our current research directions is to develop high-performance integrated photonic, quantum photonic and optoelectronic devices based on on-chip monolithically integrated quantum nanomaterials, in particular nanowires (NW). Specific examples include NW-based lasers and non-classical single photon emitters based on NW-QD (-quantum dot) devices for next-generation information technology, quantum communi­cat­ion and sensing. Hereby, an important task is to explore the optical and photonic responses of the respective systems using advanced confocal luminescence spectroscopy, where e.g. the effects of the quantized electronic structure, light-matter interactions, or the coupling of light to on-chip photonic circuits are probed. The following key publications illustrate our current work on integrated photonic NW-based devices and their properties.


Personnel

A. Ajay, J. Bissinger, H. Jeong, P. Schmiedeke, T. Schreitmüller, A. Thurn


Selected publications