Topological materials are promising for future (opto-)electronic circuits, since computing schemes can be envisaged where the information carrying state is protected by topology.
Van der Waals materials and their heterostructure are an ideal platform to engineer and explore topological states. We can control and break the relevant symmetries of the Hamiltonian at will by interfacing different van der Waals materials with different symmetries. Furthermore, we can directly address the symmetry of the electron-Bloch states in the van der Waals crystal by external electric field in atomic field effect structures.
For example, monolayers of Weyl semi-metals, such as WTe2, also have a superconducting phase far from charge neutrality. As a result, exotic phenomena such as Higgs and Majorana modes seem to be possible in the near future in such topological atomistic materials and field-effect heterostructures.
For our research, we gratefully acknowledge funding by the DFG via Grant KA 5418/1-2 within DFG Priority program 2244 " 2D Materials – Physics van der Waals [hetero]structures" and the European Union’s Horizon Europe Research
and Innovation Programme under Grant Agreement No 101076915 2DTopS.
Furthermore, we acknowledge funding via TUM International Graduate School of Science and Engineering (IGSSE) via project BrightQuanDTUM.
We are currently looking for MSc students to join research projects
in the group for the second half of 2024. Interested students are welcome to contact Christoph Kastl
to discuss specific projects.