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1 The case for silicon 
The quest to realize hardware for quantum information processing, and in particular for 
quantum computation, has motivated many research groups to assess the usability of the 
physical objects they study for this purpose. This has brought together experimentalists 
working on rather diverse topics such as ion traps, quantum optics, superconducting 
electronics and semiconductor physics with theoreticians developing quantum algorithms and 
studying decoherence processes.  
 
It is beyond the scope of this brief introduction into donor-based qubits to fully compare the 
benefits and challenges of the different quantum bits or qubits investigated so far. DiVincenzo 
has compiled a set of requirements which can be used as a guideline for such a comparison 
[1]. In particular, a scalable physical system with well characterized qubits is needed, with the 
ability to initialize and to measure them. A universal set of quantum gates, allowing the 
manipulation of a single qubit as well as the controlled interaction of two qubits is required. 
In addition, the time needed to perform gate operations has to be much smaller than the time 
during which the qubits lose their coherence. And finally, one should be able to transmit 
qubits between distant locations. So far, nuclear spins have been used most successfully to 
demonstrate that quantum algorithms really work [2]. However, these groundbreaking studies 
have been limited to small molecules with little more than a handful of spins and qubits. 
Magnetic moments, both associated with nuclei and electrons, are also present in 
semiconductors. It is therefore an interesting question whether scalable spin-based qubit 
systems can be realized in semiconductors, where in conventional microelectronics memory 
chips with more than 109 classical bits can be fabricated.  
 
Several different approaches exist to form electron spin qubits in semiconductors, such as the 
spins of electrons in electrostatically-defined or self-organized quantum dots, the spins of 
electrons bound to donors or the spins of electrons bound to defects or defect complexes. 
Useful nuclear spin qubits in semiconductors are in particular the nuclears spins of the donor 
atoms or of the atoms involved in defects and, if the semiconductor host material can be 
isotopically engineered, also the nuclear spins of the host atoms. To somewhat summarily go 
through the DiVincenzo criteria for spins in semiconductors, all qubit concepts mentioned 
above have been realized, and single qubit read-out, single qubit manipulation via magnetic 
resonance [3] as well as controlled coupling of qubits has been demonstrated for many of the 
concepts, but certainly not all. A general challenge of all solid state-based qubits including 
spins is the transfer of qubit states over long distances and it has to be noted that in this 
respect all solid-state qubit systems have not yet lived up to their originally presumed 
promise. 
 
Which solid-state spin qubit system should therefore be pursued? As has been noted by 
DiVincenzo, it may still be counterproductive to even ask this question at the present stage of 
research into semiconductor qubits [1]. To identify possible strengths of particular spin 
systems, let us however compare the times T1 and T2 of different spin systems in 
semiconductors which characterize the lifetime and the coherence time of qubits, respectively. 
T1 is used in the Bloch equations to describe the relaxation of a magnetization back to the 
equilibrium. During this relaxation, the energy of the spin system changes and therefore this 
relaxation is also called spin-lattice relaxation. In contrast, T2 accounts for processes which do 
not change the energy of the spin system such as spin-spin scattering.   
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For electron spins in electrostatically-defined quantum dots fabricated in III-V compound 
semiconductor heterostructures, a T1 of 0.85 ms [4] and values for T2 longer than 1 μs [5] 
have been reported at temperatures of about 100 mK. For electrons in self-organized III-V 
quantum dots, values for T1 up to 20 ms have been found at 1 K [6]. This comparison has to 
be taken with a grain of salt, since both T1 and T2 very sensitively depend on the temperature 
and the magnetic field. 
 
The most systematic investigation of the spin properties of donors has been performed in 
silicon. For the electron spin of phosphorus donors at 1.25 K, a T1 of 3000 s has been reported 
[7]. As in the case of quantum dots, a strong dependence on the temperature T is observed and 
T1 is found to vary proportional to T -7 between 2.5 and 4.2 K. As expected for spin-spin 
interaction, T2 is found to depend on the P concentration and T2 times as long as 4 ms have 
been observed at 7 K [8]. For the corresponding nuclear spin I=1/2 of the 31P nucleus, a T1 
exceeding 10 hours was reported at 1.25 K [7]. More recently, values of T2 for phosphorus 
nuclear spins of nearly 2 s have been measured at 7 K [9].  
 
Although the wave functions of electrons in quantum dots and at donors differ dramatically 
and therefore a direct comparison of the relevant relaxation and decoherence mechanisms is 
difficult, there is one key difference in the host materials: As shown in Tab. 1, all stable 
isotopes of the elements of groups III and V of the periodic table have a nuclear spin. In 
contrast, the elements of group IV have stable isotopes with no nuclear spin. In fact, isotopes 
of group-IV elements with a nuclear magnetic moment have a low abundance, so that Si 
crystals with a natural isotope composition contain only about 4.7 % of 29Si with I=1/2. 
Therefore, cross relaxation processes between the electron and the nuclear spin systems are 
less important in C, Si and Ge and can in particular be engineered by artificially changing the 
isotope composition, e.g. by either reducing or enhancing the 29Si concentration in Si crystals. 
Detailed experiments as a function of the isotope composition indeed show that the presence 
of 29Si decreases both the effective T1 and T2 of donors in silicon [8][10]. 
 

Group III Group IV Group V 
10B  3  19.9 % 
11B  3/2  80.1 % 

12C  0  98.9 % 
13C  1/2  1.1 % 

14N  1  99.6 % 
15N  1/2  0.4 % 

27Al 5/2  100 % 28Si  0  92.2 % 
29Si  1/2   4.7 % 
30Si  0  3.1 % 

31P  1/2   100 % 

69Ga 3/2  60.1% 
71Ga 3/2  39.9 % 

70Ge 0  21.2 % 
72Ge 0  27.7 % 
73Ge 9/2  7.7 % 
74Ge 0  35.9 % 
76Ge 0  7.4 % 

75As 3/2  100 % 

113In 9/2  4.3 % 
115In 9/2  95.7 % 

119Sn 1/2  8.6 % 
120Sn 0  32.6 % 
and eight other isotopes 

121Sb  5/2  57.2 % 
123Sb 7/2  42.8 % 

 
Tab. 1: Stable isotopes of the elements of the main groups III, IV and V, their nuclear spin 

and natural abundance.  
 
The above discussion, to my opinion, is a clear case for using group-IV elements to construct 
the host material for spin qubits. Indeed, first experiments are under way to transfer the 
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investigation of spins in electrostatically-defined quantum dots to Si/SiGe heterostructures 
[11] with the ultimate aim of nuclear-spin free heterostructures such as 28Si/28Si70Ge. 
However, a particular benefit of group-V donors as qubits in contrast to electrons in quantum 
dots is the nuclear spin of the donor atom, which due to the very long T1 and T2 times given 
above might very conveniently be used as qubit memory.  
 
Why silicon, and not diamond, where the so-called NV-center, a defect complex formed by a 
N donor and a vacancy, shows T2 times of up to 240 μs at room temperature [12][13] and 
single spin read-out has been demonstrated? This question is more difficult to answer. Read-
out of the NV-center is performed optically. In contrast, most read-out concepts investigated 
for donors in silicon are based on electrical measurements which in principle are more easily 
integrated into existing microelectronics, incidentally also based on Si, rather than optical 
detection schemes. The comparatively shallow donor level of P in Si of 45 meV below the 
conduction band, on the other hand, is easily thermally ionized, so that in bulk Si the use of P 
donors for quantum information processing will be limited to temperatures below 30 K. In 
nanostructures, however, the donor becomes deeper and could therefore be used at higher 
temperatures as well. Another possibility to increase the accessible temperature range could 
be double donors such as Se, which have a much deeper donor level.  
 
In conclusion, the possibility to isotopically engineer group-IV materials and the long spin 
lifetimes and coherence times of nuclear spins in these materials render donor states or donor-
defect complexes in C, Si, Ge, their alloys and heterostructures well worth being studied as 
qubits. After a brief summary of the theoretical description of the interaction of electron spins 
with nuclear spins, we will discuss two concepts for donor-based quantum logic devices and 
methods used to position single donor atoms. Finally, we will look into experiments on how 
to read-out the spin state of phosphorus donors via spin-to-charge conversion at the Si/SiO2-
interface.    
 

2 Coupling of electron spins and nuclear spins 
2.1 The spin Hamiltonian 
The analysis of the complete Hamiltonian of donor or defect states in a semiconductor matrix 
is very complex. For a description of the spin properties only, this difficulty is circumvented 
by the concept of a spin Hamiltonian H, which explicitly includes only spin states and 
operators, e.g. 
     ,+ += ISSSS  H

rrrrrr
ADgBμB
ˆˆˆ   (1) 

with the Bohr magneton μB = 9.274015×10−28 J/G, the magnetic field B
r

, and the electronic 
and nuclear spin operators S

r
and I

r
. The parameters , , and  are in general spatially 

anisotropic matrices with at least the symmetry properties of the orbital wave function of the 
paramagnetic state. By convention, represents the Zeeman interaction of the electronic spin 

ĝ D̂ Â

ĝ
S
r

with the magnetic field,  the fine structure interaction, and D̂ Â the hyperfine interaction 
between the electronic and a nuclear spin.  
 
To separate the spin and real space operators in such a way, it must be assumed that a ground 
state wave function can be factorized as the product of a spin state and some non-degenerate 
many-particle orbital wave function. The time-independent Schrödinger equation 

ψ=ψ ψEH  for the spin states ψ  and their eigenenergies can often be solved ψE



Donors for Quantum Information Processing  E3.5 

analytically. In more complex spin systems, they must be calculated numerically or via 
perturbation theory. The orbital parts of the wave function and spatial operators like crystal 
field and spin-orbit interaction are integrated out and appear only implicitly in the spin 
Hamiltonian via effective numerical parameters such as the effective g-tensor , whose 
deviation from the free electron’s g-factor g0=2.002319 stems from spin-orbit coupling 

 treated by second order perturbation theory 

ĝ

SLH
rr

λ=so [14]. The form of the spin 
Hamiltonian is found either ad hoc, i.e. phenomenologically, motivated by symmetry 
considerations, or by a perturbative expansion of the full Hamiltonian [15].  
 
2.2 Matrix representation 
Spin operators S

r
, which are used in various combinations to form the spin Hamiltonian, have 

the general quantum-mechanical properties of an angular momentum [16]
    mSSm )1( +=2S

r
 (2) 

   mmmz =S  (3) 

    ( ) 1)1()1( ±±−+=±=± mmmSSmim yx SSS   . (4) 
These equations are valid for spin S = 1/2 electrons as well as for many-electron systems with 
higher values of S. A set of basis vectors for the 2S+1-dimensional spin space is defined by 
unit vectors for the orthonormal states m with the eigenvalues m=−S, … , S of the operator 

. The spin operators  take the form of matrices with dimension (2S + 1) × (2S + 1). 
For a spin-1/2 system, these are the well-known Pauli matrices, which may be combined in a 
vector notation of operators to 

zS zyx ,,S

( )zyx SSSS ,,=
r

 to describe the anisotropic properties of 
spins. The matrix forms of the spin operators for all higher values of S are defined by Eqs. (2) 
to (4). In short form, all non-zero matrix elements mn y,zx,S  of the operators  can be 
summarized as 

y,zx,S

    )1()1(
2
1

1, ±−+δ= ± mmSSmn mnxS  (5) 

     )1()1(
21, ±−+δ= ± mmSSimn mny mS  (6) 

     mmn mnz ,δ=S   . (7) 
With a spin Hamiltonian built from linear combinations of such matrix operators, the 
Schrödinger equation becomes a simple matrix equation, whose eigenvalues can be calculated 
from the characteristic polynomial ( ) 0det =iE-1H , where 1 is the unity matrix, and )(BEi

r
is 

one of the eigenvalues of the matrix equation. The corresponding eigenvector iψ  defines 

the spin eigenstate for  as a linear combination iE ∑ α=ψ
m imi m of the pure basis vectors 

of . These basis vectors zS m  of are usually the eigenstates of the spin Hamiltonian in the 
limit of very high magnetic fields along the z-axis, where all other perturbations can be 
neglected. 

zS

 
A system of several spins, e.g. one electronic spin S and one nuclear spin I, requires a total of 
(2S + 1) (2I + 1) orthogonal eigen-vectors. The orthonormal basis vectors ⊗ is mm ,  of the 
product space may again be organized as unit vectors, now with a combined index (ms,mi), 
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which takes all values (−S,−I), (−S,−I+1), … , (S,I). The matrix elements 
iszyxzyxis mmnn ,,, ,,,, IS of the electronic and nuclear spin operators are defined according to 

Eqs. (5) to (7) also in this product space. The operators leave the nuclear spin states 
unaffected and are represented by the unity matrix elements 

zyx ,,S

mini,δ  for the nuclear spin, and 
vice versa  leave the electronic spin states unaffected and are represented by the unity 
matrix elements for the electronic spin, i.e. 

zyx ,,I

msns,δ

     szyxsminiiszyxis mnmmnn ,,,,, ,, SS δ=  (8) 

     izyximsnsiszyxis mnmmnn ,,,,, ,, II δ=  (9) 
with the operators on the right-hand side as defined in Eqs. (5) to (7). 
 
2.3 Diagonalization procedures 
The spin Hamiltonian matrix needs to be diagonalized in order to obtain its eigenenergies  
and eigenvectors 

iE

iψ  [17]. In cases where it is not possible to solve the matrix Schrödinger 
equation analytically, approximate solutions from perturbation theory, or exact numerical 
solutions for one set of matrix elements at a time must be obtained. These calculations are 
somewhat simplified, if the magnetic field is oriented along the z-axis of the spin 
Hamiltonian, as typically the Zeeman term dominates the eigenenergies of the spin. For other 
orientations of the magnetic field, this can be achieved by a rotation of the coordinate system 
of the spin operators SS

rr
R̂=′ [17]. In the new coordinate system, the other possible 

interactions then introduce only small off-diagonal elements to the spin Hamiltonian. 
 
The case of a phosphorus donor with S=1/2 and I=1/2, H can be solved analytically by 
inspection. Neglecting the weak nuclear Zeeman interaction, the spin Hamiltonian is 
    ( )zzyyxxBB AgBμAgBμ ISISISSISS  H +++=+=

rrrrrr
ˆˆˆ  (10) 

with the external magnetic field ( )BB ,0,0=
r

 along the z-direction, the isotropic g-factor 
, and the isotropic hyperfine interaction gg 1=ˆ AA 1=ˆ . The basis vectors is mm ,  of the 4-

dimensional product basis of and  in this example are zS zI
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The matrix form of this spin Hamiltonian is given by 
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The off-diagonal elements A/2<<μBBg can be neglected for small hyperfine couplings 
compared to the Zeeman interaction. In this case, Eq. (12) is already approximately diagonal, 
which means that the diagonal elements and the basis vectors of Eq. (11) are a first-order 
approximation to the eigenenergies and eigenvectors of the system. In this regime, both S and 
I are quantized along the external magnetic field. These first-order eigenenergies are shown as 
a function of B in the energy diagram of Fig. 1a). 
 

 
Fig. 1: Breit-Rabi diagrams a) of the first-order solutions and b) of the exact solutions of 

the spin Hamiltonian of Eq. (12) with the electronic spin S = 1/2, the nuclear spin I 
= 1/2, and the hyperfine interaction A. For better comparison, the first-order 
solutions are included in b) with dashed lines. The energy levels are labelled 
according to the basis states is mm ,  which are eigenstates of H at μBBg>>A. For 
μBBg<<A, I tends to be coupled with S to an effective angular momentum J = S − I, 
… , S + I. The vertical lines indicate the two strongly allowed ESR transitions for a 
microwave energy hν = 2A. In (b), also the weakly allowed transitions are 
indicated.  

 
According to the dipole selection rules, the allowed electron spin resonance (ESR) transitions 

are those with 
2
1,

2
1

2
1,

2
1

±−⎯→←±+  with Δms=±1 and Δmi =0. For a given transition 

energy ΔE = hν, where h is the Planck constant, these two transitions appear at the magnetic 

fields gAhB Bμ⎟
⎠
⎞

⎜
⎝
⎛ ±ν= /

2
in the first-order approximation. With the characteristic polynomial 

of the inner 2 × 2 block matrix, the exact energy eigenvalues E1, … , E4 can be calculated 
analytically without approximations over the complete magnetic field range 

    BgAE Bμ±+=
2
1

4
1

4,1  (13) 

    ( ) 22
3,2 2

1
4
1 ABgAE B +μ±−=    . (14) 



E3.8  M. S. Brandt 

The characteristic anti-crossing between the 
2
1,

2
1
m± levels for small external fields is 

shown in Fig. 1 b). In the low-field regime, the eigen-vectors 3,2E  are symmetric and 

antisymmetric combinations of the 
2
1,

2
1

−  and 
2
1,

2
1

−  basis vectors. As a consequence, the 

2
1,

2
1

2
1,

2
1

m−⎯→←±+  transitions are not completely “forbidden” in the low-field regime, 

as indicated with the smaller dots in Fig. 1 b). Physically, the system is then best described via 
a coupled angular momentum J = S − I, … , S + I for μBBg<<A. For A > 0, the J = 0 singlet 
state with opposite nuclear and electronic spin orientation has lower energy than the 
“ferromagnetically” coupled J = 1 triplet state. 
 

3 Device concepts 
The original concept to use the electron spin and the nuclear spin of phosphorus donors in 
silicon as qubits goes back to Kane [18][19]. A device similar to the one envisaged by him is 
shown in Fig. 2. It consists of two phosphorus donors placed in isotopically pure 28Si to 
suppress decoherence by the 29Si nuclear spins present in natural silicon. Each donor is 
positioned below a separate gate, denoted A gate. In between the two donors and their 
respective A gates, a second gate denoted J is placed. The device is expected to operate at a 
temperature T of about 100 mK and at a magnetic field higher than 2 T, so that the electron 
spins will be fully polarized.  
 

       

SiO2

28Si substrate

Readout

A J A

Control gatesControl gates

20 nm
31P 31P

 
 
Fig. 2: Kane concept for a quantum logic element based on the nuclear spins of 31P donors 

in isotopically pure 28Si. 
 
With the help of the A gate, the wave function of the donor electron can be manipulated, 
pulling it towards the Si/SiO2-interface or pushing it away from it. The hyperfine interaction 
A between the two spins present in a single 31P donor, the electron spin S and the nuclear spin 

I, is given by the so-called Fermi contact hyperfine interaction 2
0 )0(

3
2

ψμμμ= nnB ggA , 
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where gn is the nuclear g-factor of 31P, μn the nuclear magneton and 2)0(ψ the probability 
density of the electron donor wave function at the position of the nucleus [20][21]. Changes 
of the wave function due to a Stark effect should therefore lead to a variation of the hyperfine 
interaction. If electron spin resonance with Δms=±1 is excited at the position of one of the 
hyperfine-split resonances, say mi=+1/2, for a certain bias voltage at the A gate, changes of 
that bias voltage will lead to that particular electron spin transition going off resonance. 
Exciting the corresponding nuclear magnetic resonance (NMR) with Δmi =±1 effectively 
given by the hyperfine interaction A, a change of the bias voltage will similarly switch on or 
off the nuclear spin transition. Thereby, while exciting ESR or NMR globally, via the 
application of gate voltages either the electron or the nuclear spin can be addressed locally. 
This allows the realization of single qubit operations or gates. In his original proposal, Kane 
envisaged the use of the nuclear spins a qubits. A coupling of two nuclear spins at 
neighboring donors and therefore a two-qubit gate is possible via the electron spins at the 
respective donors. Their exchange interaction and thereby also the interaction between the 
nuclear spins are controlled in Fig. 1 by the coupling gate J influencing the overlap of the 
electronic wave functions. Since the exchange coupling, which dominates the spin-spin 
interaction of neighboring 31P electrons, depends exponentially on the distance of the donor 
atoms, the accurate placement of the donors is quite crucial in this respect. To be able to 
effectively influence the coupling by a J gate, distances of about 5 to 10 Bohr radii are 
expected to be necessary.  
 
The read-out of the electron spin state can similarly be discussed with the help of Fig. 2. For 
this, the gate voltages are adjusted such that the electron would be transferred from one donor 
to the other. Let us assume that we want to read-out the spin on the left and that the spin on 
the right is in a well known state such as spin down ms=-1/2. The final state will be a double 
occupied donor state 31P-, which according to the Pauli principle has to be in a total S=0 
singlet state. The transfer of the electron between the donors can therefore only take place 
when the left electron is in a spin up state initially, or, more correctly, if the two electron spins 
also initially form a singlet. The Pauli principle therefore governs the charge transfer rate, so 
that the spin information is transferred into a charge information. Adiabatically changing the 
coupling of the two electron spins furthermore allows to convert the nuclear spin state into the 
spin symmetry of the electron spin pair, thereby facilitating the read-out of the nuclear spin. 
Finally, Kane suggests to use sensitive capacitive techniques such as radio-frequency single-
electron transistors (rf-SETs) to determine the charge state of the read-out donor, the right 
donor in our case.   
 
The effect of electric fields E on the hyperfine interaction of donors has been investigated in 
detail using 121Sb [22]. Relative changes of the g-factor of Δg/g=-1x10-5 μm2/V2 E2 and of the 
hyperfine interaction of ΔA/A=-3.7x10-3 μm2/V2 E2 have been found The application of high 
electric fields is limited by field ionization, so that only about 3 kV/cm can be used. This 
restricts the relative change in hyperfine interaction to about 3x10-4. The vicinity of the 
Si/SiO2-interface will increase the applicable field somewhat, but still the Stark effect on the 
hyperfine interaction is limited.  
 
The main advantage of the Kane concept based on the nuclear spins of the 31P is their long 
coherence. The nutation rate with which spins can be flipped is given by  or 

, where B1 is the strength of the microwave or radio-frequency magnetic field 
used to drive the ESR or NMR, respectively. For the same B1 fields, electron spins can be 

hBg Bnut /1μ=ν
hBg nnnut /1μ=ν
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manipulated much faster than nuclear spins, allowing a higher clock speed in a possible 
quantum processor and simultaneously tolerating smaller T2. 
 
 

       

SiO2

Readout

g J g

Control gatesControl gates

31P 31P

Si0.40Ge0.60

Si0.15Ge0.85

Si0.23Ge0.77

small g factorlarge g factor

 
 
Fig. 3: Proposal by Vrijen and coworkers on a quantum logic element based on donors 

placed at the interface of two epitaxial layers of SiGe with different alloy 
composition.    

 
Vrijen and coworkers suggested an alternative concept for a donor-based quantum logic 
element using the electron spins of donors placed at the interface of two different 
semiconductor materials as qubits (Fig. 3) [23]. The full miscibility of Si and Ge as well as 
the existence of stable nuclear spin-free Si and Ge isotopes renders the SiGe alloy system 
particularly interesting for this approach. Indeed, the g-factor of donors in Si is about 1.998, 
while in Ge a g of 1.563 is found. Therefore, placing a donor at the interface of two 
isotopically pure 28Si and 70Ge layers, or rather two isotopically pure Si1-xGex alloys with alloy 
compositions such that the donor level is at the same energy in both layers, one might 
influence the g-factor via pushing or pulling the donor wave function from one material to the 
other with a gate now labeled g to a larger degree than by the Stark effect discussed for 
donors in pure Si above. However, it must be noted that the electrons will reside in different 
valleys in the two layers, since the conduction band minima of Si are near the X point in the 
Brillouin zone, while the band minima in Ge are at the L point. The effect of an effective 
intervalley scattering performed by the application of an electric field in the Vrijen concept in 
particular on T2 remains to be investigated. Nevertheless, in addition to a possibly much 
higher change in the g-factor, the more shallow donors in Ge-rich SiGe alloys also have larger 
Bohr radii, so that the qubits have to be farther apart than in the pure Si design by Kane and 
the requirements for the accuracy of the donor placement can be less stringent.    
       

4 Fabrication of single-donor devices 
One of the main challenges in the realization of donor-based quantum logic devices is the 
accurate placement of single donors. As outlined above, the distance of the donors both to the 
Si/SiO2-interface and to the neighboring donors should be typically of the order of 20 nm. The 
main approaches to realize such a position of single donor atoms are implantation and 
lithography. 
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In state-of-the-art single-dopant implantation, the silicon substrate itself is used as a particle 
detector [24]. Phosphorus ions being implanted will generate electron-hole pairs, which are 
separated in the applied electric field. Using appropriate electronics, the current pulse thus 
generated by a single ion implantation event can be detected. If a low flux of incident ions is 
used, a beam blanker can be activated quickly enough after the observation of an implantation 
event to prevent further ions from reaching the substrate, allowing single ion implantations. 
Lithographically-defined masks can define the location of the implantation. When pairs of 
dopants are to be formed, the approach based on two neighboring openings in the mask will 
provide such dopant pair structures with a probability of 50%. Alternatively, atomic force 
microscopy (AFM) tips, which have a channel in the tip through which the ions can be 
implanted, have been used as moveable implantation masks [25], reducing the risk of double 
implantation through a single opening in the lithographically-defined mask.      
 
Shallow implantations with a typical depth of 20 nm can be obtained with phosphorus ion 
energies of the order of 10 to 20 keV. However, the scattering between the incident ion and 
the atoms of the Si substrate lead to straggle. At a primary energy of 14 keV for singly 
negatively charged P ions, the exact position of the P atom in the Si substrate after 
implantation varies by about 11 nm in the distance to the substrate surface and by about 8 nm 
in the directions perpendicular to that. Together with the diameter of the mask openings, this 
straggle leads to a variation of the distance between P atoms e.g. forming a quantum logic 
element as sketched in Fig. 2 by several Bohr radii. 
 
An alternative, but experimentally even more challenging approach is the use of lithography 
based on scanning tunneling microscopy (STM) [26][27][28]. The fundamental idea is to 
fabricate a hydrogen-terminated surface and, with the help of an STM tip, to locally remove 
this atomic analog to a photoresist. The surface Si atoms not terminated by hydrogen are very 
reactive, and PH3 molecules brought onto the surface will bind to them, which allows to 
position single phosphorus atoms with the atomic precision of STM. It only remains to form 
an epitaxial Si cap layer, followed by growth of a SiO2 barrier and the fabrication of the gate 
contacts. However, Si tends to move with the growth front at the temperatures usually used 
for high quality epitaxial growth, which would significantly reduce the accuracy of the P 
placement in the final device structure. Using an intermediate growth step at room 
temperature, followed by a rapid thermal anneal and a high temperature overgrowth, the 
“straggle” in the P position can be reduced to below 1 nm,  a value smaller than the Bohr 
radius of effective mass donors in Si. However, it should be noted that also in the case of 
STM lithography, every P donor pair formed will have such a different overlap of the wave 
functions that the relevant voltages at the J gates in Fig. 2 for the switching of the electronic 
spin-spin interaction will have to be adjusted separately for each pair. Apart from devices for 
quantum information processing, the STM-based lithography summarized also allows the 
fabrication of other interesting and novel devices for “atomic electronics” in general.           
  

5 Read-out of electron spin states 
The second main challenge is the read-out of single donor spins. While this has been 
demonstrated for electrostatically-defined [4] and self-organized quantum dots [29] as well as 
for the NV-center in diamond [30], the successful determination of both the electron and the 
nuclear spin state of single donors is subject to intense work by several groups. 
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5.1 Silicon rf-SETs 
In parallel to the fabrication of single dopant devices, significant progress is being made in the 
development of techniques for the sensing of single charges in Si devices, an integral step in 
the measurement of spin states. An example are radio-frequency single electron transistor (rf-
SET) formed at the Si/SiO2-interface of a nearly undoped Si substrate [31]. Between the 
source and drain contacts, an n-type channel with a low electron density is formed. Via two 
gate electrodes, an island can be controllably created in the middle of the channel. The radio-
frequency reflectance of the device, a measure of the source-drain conductance, shows clear 
Coulomb diamonds, demonstrating the possibility to measure the change of the number of 
charges on the islands on a single-electron level. The particular detection via rf reflectance 
allows charge measurements with a bandwidth as high as 2 MHz, comparable to that of 
mature aluminium rf-SETs. These results suggest that the quantum logic element as well as 
the charge detector required for the spin read-out could be fabricated as an integrated device 
from Si.       
 
5.2 Spin-to-charge conversion at the Si/SiO2-interface 
So far, we have discussed the read-out of the electron spin state via a spin-to-charge 
conversion process involving two neighboring 31P donor states. However, any paramagnetic 
state can be used as a partner to read-out the donor spin state. To be able to manipulate the 
qubits, the donors have to be near to the gate electrodes, which are insulated from the silicon 
substrate via an oxide. At the interface of the silicon and this oxide, defects such as 
unsaturated Si “dangling” bonds occur naturally in concentrations of typically between 1011 
and 1013 cm-2, depending on the exact oxide growth conditions. By passivation with hydrogen 
in a forming gas anneal or via compensation, the density of these defects can be reduced. 
However, they can also be used very conveniently as the partner required for spin-to-charge 
conversion [32]. 
 
Figure 4 shows a spin-dependent recombination process involving a 31P donor electron and 
the dominant Si/SiO2-interface defect named Pb0 [33]. As in the case of the charge transfer 
between neighboring P donors discussed above, the recombination step can only proceed if 
the 31P-Pb0 pair is initially in a singlet spin configuration. In this case, a negatively charged 
Pb0

- state is formed. If mobile charge carriers are present such as electrons and holes generated 
by illumination, an electron will be trapped by the positively charged 31P and a hole by the 
negatively charged Pb0 center, leading to a reduction of the carrier densities and to a reduction 
of the conductivity. The symmetry of the spin pair and therefore also the electron spin state of 
the donor can thus be detected by changes in e.g. the photoconductivity. 
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Fig. 4: Spin-to-charge conversion at the Si/SiO2-interface.    
 
To demonstrate the feasibility of this electrical read-out scheme of the electron spin state, let 
us look at an ensemble of 31P-Pb0 pairs. Due to the spin-allowed recombination, most 31P-Pb0 
singlet pairs will have recombined in thermal equilibrium, most 31P-Pb0 pairs remaining will 
be in a triplet configuration. Turning triplets into singlets via electron spin resonance of either 
the 31P or the Pb0 (which is possible when the 31P-Pb0 coupling is small), pair recombination is 
increased [3]. Continuous resonance excitation will lead to a continuous oscillation of the 
ensemble being dominantly in the triplet or singlet configuration and, simultaneously, an 
oscillation of the 31P-Pb0 recombination rate. The observation of these Rabi oscillations in the 
conductivity will be a clear demonstration of this spin read-out concept. However, the RC-
timeconstants of the samples typically studied do not allow the direct monitoring of these 
oscillations. To overcome this limitation, two technical tricks summarized in Fig. 5 are 
currently used [34].  
 
Figure 5 a) shows the oscillation of the recombination during the application of a microwave 
pulse exciting electron spin resonance of either partner in the spin pair. After the pulse, the 
spin system is most-likely in a non-equilibrium state determined by the symmetry of the 31P-
Pb0 pairs and will relax back into equilibrium. Governed by different time constants including 
the singlet- and triplet recombination times and the RC-timeconstant of the detection system, 
a current transient will be observed during this relaxation. The amplitude of this current 
transient, however, is proportional to the deviation of the singlet/triplet content of the spin 
pair ensemble at the end of the microwave pulse from thermal equilibrium (Fig. 5 b), so that 
measurements of this transient long after the excitation of the spin resonance has finished 
provide the wanted information on the spin orientation [34]. To further improve the signal-to-
noise ratio of these experiments, the current transient is integrated over a certain time 
window, yielding a charge Q as the primary physical quantity measured (Fig. 5 c).  
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Fig. 5: Measurement of the recombination rate at the end of the microwave pulse exciting 

the electron spin resonance of 31P-Pb0 pairs. 
 
 

Fig. 6: Rabi oscillations of the 
31P-Pb0 recombination 
at the Si/SiO2-inter-
face observed by 
electrically detected 
magnetic resonance 
(EDMR). 

 
The result of such pulsed electrically detected magnetic resonance (EDMR) experiments are 
shown in Fig. 6 as a function of the length of the microwave pulse τp for a sample containing 
about 1010 P donors in a 15 nm thin Si layer capped with a native SiO2, corresponding to a 
phosphorous concentration of about 1017 cm-3. At three different magnetic fields, clear 
oscillations of Q are found [32]. The resonances at 346.1 and 350.3 mT are the hyperfine split 
signature of the 31P donor. The difference in the magnetic fields of the two resonance 
positions is A/μBg as shown in Fig. 1. The resonance at 347 mT is caused by the Pb0 centers. 
Final proof that indeed Rabi oscillations induced by magnetic resonance are observed comes 
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from the reduction in the Rabi oscillation frequency hBg Bnut /1μ=ν  upon lowering of the 
microwave power used (Fig. 7).  2

1BP w ∝μ

  

        

Fig. 7:  Dependence of the Rabi 
oscillation frequency on 
the microwave power 
used. 

 
 
5.3 Decoherence  
Spin coherence can be studied with a variety of different techniques, including the 
measurement of the spin resonance lineshape and intensity as a function of microwave power 
and dynamical variables such as the rate with which the magnetic field is changed. These 
approaches can be summarized by the term “passage effects”. Alternatively, so-called echo 
techniques can be used [35]. The coherence time T2 can e.g. be determined via a Carr-Purcell 
echo experiment, which consists of a pulse sequence denoted by π/2-τ1-π-τ2, where π/2 and π 
denote the rotation angle of the spin system induced by resonant microwave pulses and τ1 and 
τ2 are the free evolution periods between the pulses [36]. Such a Carr-Purcell echo is shown in 
Fig. 8 a) for an ensemble of identical spins (e.g., the spins of phosphorus donors) plotted in a 
Bloch sphere, starting, e.g., with the spin ensemble in the down eigenstate ms=-1/2. The 
microwave pulses are assumed to rotate the spins around the x-axis of the Bloch sphere. The 
echo develops in the x-y plane of the Bloch sphere, giving rise to a pulse in the transverse 
magnetization at τ1=τ2, which is easily detectable in conventional ESR. However, the 31P-Pb0 
spin-to-charge conversion process is sensitive to the singlet-triplet symmetry of a spin pair, 
which is not changed by the formation of an echo in the transverse magnetization. A 
successful detection of such echoes via charge transport therefore requires so-called echo 
tomography [37], where after the second free evolution period τ2 a final π/2 pulse rotates the 
spin system back into singlet or triplet eigenstates of the pair, shown in Fig. 8 c) in more 
detail. For τ2<τ1 and τ2>τ1, no echo has developed in the x-y plane so that after the final π/2 
pulse, the spins of the ensemble point to all directions in the x-z plane of the Bloch sphere. 
Both triplet and singlet configurations will therefore be found in ensembles of the 31P-Pb0 spin 
pairs under these conditions. However, for τ2=τ1, an echo has developed, so that after the final 
π/2 pulse, the 31P spin ensemble is in the original ms=-1/2 down eigenstate again. If the Pb0 
partner in the spin state is in its ms=-1/2 state, we find only the triplet configuration for the 
31P-Pb0 spin pairs. Therefore, echoes can be formed also in the singlet-triplet symmetry of spin 
pairs and are accessible to purely electrical detection. 
 
We can predict the experimental signature of the echoes. The pulse sequence π/2-τ1-π-τ2-π/2 
contains microwave pulses with a total length of 2π. Ideally, we therefore expect a value of Q 
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after a Carr-Purcell echo sequence with τ2=τ1 equal to the Q found after a rotation by 2π in a 
Rabi-flop experiment shown in Fig. 8 b). For τ2<τ1 and τ2>τ1, the spin-pairs are not in the 
steady-state configurations. Rather, the ensemble of spin-pairs will contain singlet and triplet 
configuration in about equal contributions and therefore a larger Q corresponding to Rabi 
oscillations by 3π/2 and 5π/2 is expected as the result of such Carr-Purcell sequences. A 
quantitative comparison of Q observed on the high-field 31P resonance at 350.3 mT during the 
echo in Fig. 8 d) to the Q observed in the Rabi oscillation in Fig. 8 b) demonstrates that the 
echo amplitude ΔQ is indeed as large as expected. 

a) c)

b) d)

a) c)

b) d)

 
 
Fig. 8: Application of echo tomography to the Carr-Purcell method to measure the 

coherence of 31P-Pb0 spin pairs via charge transport. b) and d) show that the echo 
amplitude ΔQ can be understood quantitatively from the amplitude of the Rabi 
oscillations.   

 
 
To determine the echo decay time and therefore the effective coherence time, the echo 
sequence is measured as a function of τ1 and τ2. In all cases, the echo is observed at τ2=τ1 and 
its intensity decreases monoexponentially for longer values of τ with a characteristic time 
constant of about 1.7 μs both for echos detected on the 31P and the Pb0 resonance [37]. We 
have already mentioned the much longer values for T2 observed in bulk crystals of 
isotopically pure 28Si with low 31P concentrations [8]. In bulk natSi with a donor concentration 
of 1017 cm-3 as in our samples, the T2 determined by magnetization echo experiments is 
already reduced to about 10 μs [38]. The presence of the Si/SiO2-interface is also expected to 
lead to a reduction of the coherence [39], as has been shown experimentally for implanted Sb 
donors [40]. However, EDMR experiments using pulses at different microwave frequencies to 
induce spin flips of both partners in the 31P-Pb0 pair are able to measure the singlet 
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recombination time. A quantitative comparison of the singlet recombination time and the 
effective echo decay time shows that the coherence of the 31P-Pb0 is limited by the lifetime of 
the spin pair, rather than by spin-spin scattering. The observation of spin echos in the charge 
transport opens the possibility to apply pulse sequences such as DEER and ESEEM including 
free evolution times to study spin-spin interactions in these devices, allowing the 
determination of the coupling between the electron spins at 31P and Pb0 or between the donor 
electron spin and the nuclear spins of 29Si, respectively, and ultimately the realization of 
entanglement between these spins.  
 
5.4 Outlook 
The results discussed above show that, at least for ensembles, the read-out of the electron spin 
state via 31P-Pb0 pairs is feasible. This observation opens up a wealth of opportunities: Using 
the A gates in Fig. 2, it can be envisaged that by changing the gate voltages the coupling 
between the donor wave function and the read-out spin at the Si/SiO2-interface can be varied, 
which would allow the selective addressing and reading of the single 31P spins [41]. Electrical 
detection of spin resonance, but not yet actual spin read-out has already been achieved on 
samples containing as few as 50 P donors [42]. Furthermore, several different approaches for 
the electrical read-out of the nuclear spin state are being discussed. Irrespective of the possible 
use of this particular read-out scheme or even the use of donors for quantum information 
processing, these studies allow a more detailed understanding of the complex charge carrier 
and spin dynamics in semiconductor nanostructures.   
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