“Towards supersensitive optical phase measurement using deterministically generated multi-photon entangled states”

When light passes through a thin transparent medium, it gains a phase that usually depends on the width of the film, its refractive index, birefringence. Measuring this phase with high precision is beneficial for many technological applications, such as in phase-contrast microscopy. It has been suggested that entangled light can provide better accuracy in phase measurement compared to classical light. Using $N$ independent photons, the error in the phase scales as shot noise, $1/\sqrt{N}$, while entangling the photons in a GHZ state provides the ultimate precision of $1/N$, a factor of $\sqrt{N}$ better. In my talk, I will describe how we generate a photonic GHZ state using an anchored spin in a self-assembled semiconductor quantum dot. I will present a demonstration where we use the GHZ state to enhance precision in a phase measurement. Since our entanglement production is deterministic, our method is the most promising to be scaled up to many entangled photons, where the precision gain becomes significant.

Giora Peniakov
Technion
Haifa, Israel