“Cavity polaritons with atomically thin crystals”

Condensation of bosons into a macroscopic quantum state belongs to the most intriguing phenomena in nature, which became accessible in open-dissipative, exciton-based solid-state systems at elevated temperatures. Semiconducting monolayer crystals have emerged as a new platform for studies of strongly bound excitons and exciton-polaritons [1] in ultimately thin materials. We discuss the formation of a bosonic condensate driven by excitons hosted in an atomically thin layer of MoSe$_2$, strongly coupled to light in a solid-state resonator [2]. Polariton condensation manifests by a superlinear increase of emission intensity from the hybrid polaritons. The mode experiences a collapse of the emission linewidth, a core sign of temporal coherence. With increasing pump power, we observe a blueshift of our resonance which originates from particle interaction with free excitons in the uncondensed reservoir states. We observe a significant spin-polarization in the injected polariton condensate, a clear sign for valley-selective condensation in our crystal. In turn, high fidelity spin-selective, as well as valley-coherent injection of valley exciton-polaritons is demonstrated via resonant, non-linear spectroscopy. In contrast to previous experiments based on excitons in bare MoSe$_2$ monolayer crystals, valley polarization and coherence can be retained to a very high degree the MoSe$_2$ polariton-system. As a consequence, valley selective polariton currents emerge in the expanding polariton cloud, a manifestation of the optical valley Hall effect in the hybrid light-matter system.


Dr. Christian Schneider
Technische Physik and Wilhelm Conrad Röntgen-Center for Complex Material Systems,
University Würzburg
Germany