Ferromagnetic semiconductors

Ferromagnetic semiconductors have been a very active research field in the last couple of years. They promise to combine the versatility of magnetic effects with the ability to electrically tune the properties of semiconductors. The ferromagnetic semiconductor best studied to date is GaMnAs, typically containing a few percent of Manganese. The Manganese atoms act as acceptors, and the holes generated mediate the ferromagnetic coupling between the half-filled 3d shells of the Mn.

GaMnAs has the highest Curie temperature of any ferromagnetic semiconductor reported so far. This temperature, below which a material is ferromagnetic, is 173 K, corresponding to –100°C. Therefore, one of the major research areas is the search for ferromagnetic semiconductors with a higher Curie temperature. We have studied two of the main candidates in more detail: In GaMnN, we pointed out that the Mn acceptor level becomes deep prohibiting effective doping and carrier-mediated ferromagnetism. In GeMn, we observed the formation of a spin-glass phase. While indicative of magnetic ordering, the slow relaxation typical of glasses does not encourage the use of this material for applications. In collaboration with colleagues in Berkeley, we therefore currently concentrate on the effect of alloying P or Sb to GaMnAs.

The second major research area is the tuning of the magnetic properties of this class of materials. We have pioneered the use of hydrogen to tune the magnetic properties of ferromagnetic semiconductors. Hydrogen is known to passivate acceptors, so that the introduction of hydrogen removes the holes required for the carrier-mediated ferromagnetism. We have demonstrated the effect of hydrogen on GaMnAs and GaMnP so far, where incorporation of hydrogen leads to a complete suppression of ferromagnetism, and currently focus on the understanding of the Mn-H complexes formed using techniques such as electron spin resonance, particle-induced X-ray emission, X-ray standing waves and X-ray absorption fine structure. In addition, we study in detail the possibility to manipulate the magnetic properties of ferromagnetic semiconductors via mechanical stress, and have demonstrated both the reversible continuous reorientation as well as the nonvolatile switching of the magnetic easy axis of GaMnAs thin films.

Selected Publications

  • The Mn3+/2+ acceptor level in group III nitrides
    Applied Physics Letters 81 5159 (2002)
    T. Graf, M. Gjukic, M. S. Brandt, M. Stutzman, O. Ambacher
  • Spin wave resonance in Ga1-xMnxAs
    Applied Physics Letters 82 730 (2003)
    S.T.B. Goennenwein, T. Graf, T. Wassner, M. S. Brandt, M. Stutzmann, J.B. Philipp, R. Gross, M. Krieger, K. Zurn, P. Ziemann, A. Koeder, S. Frank, W. Schoch, A. Waag
  • Prospects for carrier-mediated ferromagnetism in GaN
    Feature article, physica status solidi B 239 277 (2003)
    T. Graf, S.T.B. Goennenwein, M. S. Brandt
  • Hydrogen control of ferromagnetism in a dilute magnetic semiconductor
    Physical Review Letters 92 227202 (2004)
    S.T.B. Goennenwein, T. A. Wassner, H. Huebl, M. S. Brandt, J.B. Philipp, M. Opel, R. Gross, A. Koeder, W. Schoch, A. Waag
  • Angle-dependent magnetotransport in cubic and tetragonal ferromagnets: Application to (001)- and (113)A-oriented (Ga,Mn)As
    Physical Review B 74 205205 (2006)
    W. Limmer, M. Glunk, J. Daeubler, T. Hummel, W. Schoch, R. Sauer, C. Bihler, H. Huebl, M. S. Brandt, S.T.B. Goennenwein
  • Spin-glass-like behavior of Ge: Mn
    Physical Review B 74 045330 (2006)
    C. Jaeger, C. Bihler, T. Vallaitis, S.T.B. Goennenwein, M. Opel, R. Gross, M. S. Brandt
  • Ga1−xMnxAs/piezoelectric actuator hybrids: A model system for magnetoelastic magnetization manipulation
    Physical Review B 78 045203 (2008)
    C. Bihler, M. Althammer, A. Brandlmaier, S. Geprägs, M. Weiler, M. Opel, W. Schoch, W. Limmer, R. Gross, M. S. Brandt, and S. T. B. Goennenwein


TUM Technische Universität München TUM Technische Universität München Physik Department Elektrotechnik und Informationstechnik TUM Technische Universität München

Recent publications

Interaction of Strain and Nuclear Spins in Silicon: Quadrupolar Effects on Ionized Donors

Phys. Rev. Lett. 115, 057601 (2015)

D. Franke | F. Hrubesch | M. Künzl | H. W. Becker | K. M. Itoh | M. Stutzmann | F. Hoehne | L. Dreher | M. S. Brandt

Online Reference

see also: Nuclear Spins of Ionized Phosphorus Donors in Silicon

Phys. Rev. Lett. 108, 027602 (2012)

L. Dreher | F. Hoehne | M. Stutzmann | M. S. Brandt

Online Reference

Ultrafast electronic read-out of diamond NV centers coupled to graphene

Nature Nanotechnology 10, 135 (2015)

A. Brenneis | L. Gaudreau | M. Seifert | H. Karl | M. S. Brandt | H. Huebl | J. A. Garrido | F. H. L. Koppens | A. Holleitner

Online Reference

Bipolar polaron pair recombination in polymer/fullerene solar cells

Physical Review B 92, 245203 (2015)

A. Kupijai | K. M. Behringer | F. Schäble | N. Galfe | M. Corazza | S. A. Gevorgyan | F. C. Krebs | M. Stutzmann | M. S. Brandt

Online Reference

Broadband electrically detected magnetic resonance using adiabatic pulses

Journal of Magnetic Resonance 254, 62 (2015)

F. Hrubesch | G. Braunbeck | A. Voss | M. Stutzmann | M. S. Brandt

Online Reference

High cooperativity coupling between a phosphorus donor spin ensemble and a superconducting microwave resonator

Appl. Phys. Lett. 107, 142105 (2015)

C. W. Zollitsch | K. Mueller | D. Franke | S. T. B. Goennenwein | M. S. Brandt | R. Gross | H. Huebl

Online Reference

Submillisecond Hyperpolarization of Nuclear Spins in Silicon

Phys. Rev. Lett. 114, 117602 (2015)

F. Hoehne | L. Dreher | D. Franke | M. Stutzmann | L. S. Vlasenko | K. M. Itoh | M. S. Brandt

Online Reference