Decoherence in self-assembled quantum dots

Quantum dots are another type of artificial atom which can be realized in semiconductors. Such dots form naturally e.g. when thin layers of InGaAs are grown on GaAs. Self-organized quantum dots are already used commercially in light emitting diodes, but are still subject to intense investigations of their fundamental physical properties. One interesting aspect is the fact that single electrons or holes can be stored in these quantum dots for very long times. Using circularly polarized light for the excitation of the quantum dot, the electron or hole can be created with a specific spin state which, notably, also survives for hundreds of microseconds. For the application of these spin states in quantum information processing, also their decoherence has to be slow compared to the clock rate of future processors. We study the spin decoherence in quantum dots using pulsed magnetic resonance techniques and develop new methods to efficiently read out the spin state of single charge carriers in quantum dots.

Selected publications

  • Observation of extremely slow hole spin relaxation in self-assembled quantum dots
    Physical Review B 76 241306 (2007)
    D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, D. Loss
    Download
  • Spintronics: Information Processing with Spins
    WSI Book (2008)
    Download

Collaborations

Funding

DFG via SFB 631 “Solid-State Quantum Information Processing”, Teilprojekt C6 “Coherent Control of Electron and Hole Spin Qubits in Quantum Dots and Molecules Using Microwave Fields”

TUM Technische Universität München TUM Technische Universität München Physik Department Elektrotechnik und Informationstechnik TUM Technische Universität München
 

Recent publications

Interaction of Strain and Nuclear Spins in Silicon: Quadrupolar Effects on Ionized Donors

Phys. Rev. Lett. 115, 057601 (2015)

D. Franke | F. Hrubesch | M. Künzl | H. W. Becker | K. M. Itoh | M. Stutzmann | F. Hoehne | L. Dreher | M. S. Brandt

Online Reference

see also: Nuclear Spins of Ionized Phosphorus Donors in Silicon

Phys. Rev. Lett. 108, 027602 (2012)

L. Dreher | F. Hoehne | M. Stutzmann | M. S. Brandt

Online Reference

Ultrafast electronic read-out of diamond NV centers coupled to graphene

Nature Nanotechnology 10, 135 (2015)

A. Brenneis | L. Gaudreau | M. Seifert | H. Karl | M. S. Brandt | H. Huebl | J. A. Garrido | F. H. L. Koppens | A. Holleitner

Online Reference

Bipolar polaron pair recombination in polymer/fullerene solar cells

Physical Review B 92, 245203 (2015)

A. Kupijai | K. M. Behringer | F. Schäble | N. Galfe | M. Corazza | S. A. Gevorgyan | F. C. Krebs | M. Stutzmann | M. S. Brandt

Online Reference

Broadband electrically detected magnetic resonance using adiabatic pulses

Journal of Magnetic Resonance 254, 62 (2015)

F. Hrubesch | G. Braunbeck | A. Voss | M. Stutzmann | M. S. Brandt

Online Reference

High cooperativity coupling between a phosphorus donor spin ensemble and a superconducting microwave resonator

Appl. Phys. Lett. 107, 142105 (2015)

C. W. Zollitsch | K. Mueller | D. Franke | S. T. B. Goennenwein | M. S. Brandt | R. Gross | H. Huebl

Online Reference

Submillisecond Hyperpolarization of Nuclear Spins in Silicon

Phys. Rev. Lett. 114, 117602 (2015)

F. Hoehne | L. Dreher | D. Franke | M. Stutzmann | L. S. Vlasenko | K. M. Itoh | M. S. Brandt

Online Reference